EV용 고성능 그래핀 나노튜브 배터리


자동차 산업은 내연기관차(ICE)에서 전기차(EV)로 전환하고 있으며 EV의 핵심 요소는 리튬 이온 배터리입니다. 자동차 산업은 오랫동안 차세대 리튬 이온 배터리를 구동하는 기술을 찾고 있습니다.

그래핀 나노튜브- 주요 배터리 문제의 대한 해결책입니다

TUBALL™ 그래핀 나노튜브는 에너지 밀도, 충전 속도, 사이클 수명 및 비용 등과 같은 리튬이온전지의 주요 파라미터를 개선할 수 있는 솔루션입니다.

TUBALL™로 실리콘 음극 대량 생산 가능

배터리 충·방전 시, 실리콘 부피가 팽창하는 근본적이고 해결되지 않은 문제가 있으며, 이는 실리콘 물질 입자 간의 손실과 균열로 이어집니다.

TUBALL™ 그래핀 나노튜브는 심각한 부피 팽창과 균열에도 실리콘 음극 입자가 서로 잘 연결되도록 길고 유연하며 전도성이 높고 튼튼한 내구성을 만들어 내는 유일한 소재 입니다. 

또한 TUBALL 제품을 사용하면 음극이 수명을 향상되어 엄격한 EV 제조업체 요구 사항도 충족시킬 수 있습니다. 

TUBALL™ 네트워크는 실리콘 기반의 음극 사이클 수명을 최대 4배 이상 증가합니다

주요 리튬이온전지 생산업체들은 TUBALL™ 그래핀 나노튜브를 적용하여 20%의 Si가 내장된 음극을 만들어 최대 300 Wh/kg 및 800 Wh/l의 기록적인 배터리 에너지 밀도에 도달할 수 있다는 것을 입증했습니다. 이 배터리 셀은 현재 시장에 나와있는 최고의 리튬이온전지셀 보다 최대 +15% 더 높은 범위를 제공할 수 있습니다.

OCSiAl R&D 팀의 결과에 따르면 TUBALL 제품을 사용하면, 음극의 SiO 함량을 90%까지 증가할 수 있습니다. 

TUBALL™을 양극에 적용하면, 핵심 배터리 파라미터를 개선할 수 있습니다

그래핀 나노튜브의 고유한 특성 때문에 방전 전력, 에너지 밀도, 접착력 및 안전성 등 향상된 리튬이온전지 성능을 제공합니다. 이러한 리튬이온전지 양극 성능 개선 부분에 있어서는 탄소블랙이나 다중벽 탄소 나노튜브과 같은 기존 첨가제로는 입증할 수 없습니다.

Explore more on TUBALL™ in anodes and cathodes.

TUBALL™ 그래핀 나노튜브: 적용 방법

세계 최대 그래핀 나노튜브(=단일벽 탄소 나노튜브) 제조사인 옥시알은 음극과 양극을 위한 사용이 용이한 솔루션을 개발했습니다. TUBALL™ BATT 은 물 또는 NMP에 잘 분산된 나노튜브가 포함돼 있으며, 표준 분산 공정에서 간단히 혼합할 수 있습니다




Related videos:

Electric car rEVolution: why graphene nanotubes will be inside next-gen batteries

How do nanotubes work inside an electrode?


Contact us to discuss your project specifications or to request a sample


Scientific validation

Anode

Silicon Single Walled Carbon Nanotube-Embedded Pitch-Based Carbon Spheres Prepared by a Spray Process with Modified Antisolvent Precipitation for Lithium Ion Batteries

The pitch-derived soft carbon and SWCNTs provided an excellent conductivity, and the porous structure of the composite accommodated the stress produced by the Si expansion.


Published:
Anode & Cathode

High areal capacity battery electrodes enabled by segregated nanotube networks

High thickness and specific capacity leads to areal capacities of up to 45 and 30 mAh cm−2 for anodes and cathodes, respectively. Combining optimized composite anodes and cathodes yields full cells with state-of-the-art areal capacities (29 mAh cm−2) and specific/volumetric energies (480 Wh kg−1 and 1,600 Wh l−1).


Published:
Anode

All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility

The all‐nanomat full cell shows exceptional improvement in battery energy density – 479 Wh/kg battery, and Si-anode capacity – 1166 mAh/g.


Published:
Anode

Optimization of Graphite–SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive

The use of SWCNT conductive additive enables graphite-free SiO electrodes with 74% higher volumetric energy and superior full-cell cycling compared to graphite electrodes.


Published:
Anode

Self-transforming stainless-steel into the next generation anode material for lithium ion batteries

Areal capacities greater than 10 mAh/cm2 and volumetric capacities greater than 1400 mAh/cm3 can be achieved.


Published:
Cathode

Rational design of a high-energy NCA cathode for Li-ion batteries

Replacing Denka black with SWCNT allows to reduce the carbon content to 0.2 wt% to further increase the energy density, and 2 wt% of PVDF was shown to benefit the cycling stability due to the mitigated PVDF-induced side reactions from its direct contact with NCA particles.


Published: