Cathode
Request

TUBALLBATT NMP

Request

TUBALL™ BATT NMP is an ultrafine TUBALL™ nanotube dispersion in NMP for high-energy cathodes. TUBALL’s unmatched conductivity enables improved battery safety and energy density. TUBALL™ BATT is now available in an optimized, more cost-efficient dispersion form.

To buy nanotube products, please contact us. Price depends on the required volumes.

Material system
High energy cathodes (ex. NCM 811, NCM 622, NCM 523, NCA, LCO, LFP)
Сoncentrate carrier
NMP, PVDF, others
Shape
Suspension

Benefits

Boosted energy density

Thanks to 10–60 times lower loading of conductive additive, up to 98.8% active material content possible in dry electrode

Higher safety

Increased safety due to halved battery resistance increase (DCR)

Higher discharge power

>50% higher at high discharge rates

Improved adhesion

Doubled thanks to the bond strength between cathode particles



Documents
Also available in:
english
SDS TUBALL BATT NMP PVDF EU ENG V1-1 (ES EXTENDED).PDF
PDF
512.00 kB
SDS TUBALL BATT NMP JP ENG V1-0.PDF
PDF
307.20 kB
SDS TUBALL BATT NMP CN ENG V1-0.PDF
PDF
409.60 kB
SDS TUBALL BATT NMP TW ENG V1-0.PDF
PDF
307.20 kB

News

November 14
Join our webinar on December 5 and gain the latest technical insights on SWCNTs in today’s trending battery technologies. Nanotubes pave the way to long-lasting, silicon-rich (SiOx and SiC) anodes, enable record-thick LFP cathodes for energy storage systems (ESS) and EVs, make it possible to improve the tensile strength and reduce the amount of PTFE in this emerging tech, improve battery cycle life, and lower internal resistance, enabling high-performing electrodes, fast-charging graphite, and single-crystal NCM materials. Register via the link: https://events.zoom.us/ev/AsJM4aDgmkugi1bR5OFlW9jPyR92HdeOIMqzi5262YDKXEdDd-yY~ArXTE2RAoIF4YVW0EQis7V2Izp2uj8cK477DYBQAk7rDpL_OOCdeJ4LyYowcwinmRAfWiW8WJdtGvSSxUMkQACiPvQ Learn more about nanotubes in batteries: https://tuball.com/nanotubes-for/high-performance-ev-batteries?utm_source=facebook&utm_medium=Battery+announcement+%232&utm_campaign=Nov+14%272023 #freewebinar #batteries #EV
October 19
Graphene nanotubes in tire treads can reduce emissions from EV usage by 2–4%. How? Nanotubes add conductivity and make it possible to alter formulations to retain high elasticity in tire treads. This decreases tan delta at 60°C by 15–25%, consequently reducing the rolling resistance coefficient by about 7–12%. Ultimately, this results in 2–4% less emissions during EV usage. Learn more on graphene nanotubes for elastomers: https://tuball.com/nanotubes-in/elastomers?utm_source=Facebook&utm_medium=GNT+emission+banner&utm_campaign=post+campaign_Oct+19 #EV #tires #emissions #sustainability
October 11
The performance improvements in Li-ion battery cathodes with graphene nanotubes are unmatchable with traditional conductive materials. 🔋 With less than 0.1% TUBALL graphene nanotubes(a concentration 10–60 times lower than is needed with multi wall carbon nanotubes or carbon black), higher energy density is achieved. Intrigued? Discover more here: https://tuball.com/nanotubes-in/cathodes?utm_source=Facebook&utm_campaign=Post+campaign&utm_term=Oct+11 #Liion #batteries #cathodes #EV